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Abstract  
In this paper, we investigate the energy integral, which is obtained in the problem of the 

motion of a material point in a central field within thе frame of the general theory of relativity. 

Applied is the method of the small parameter in a combination with the balance method. Derived is a 

compact formula, describing the trajectory of the motion. This formula gives a correct quantitative 

description of the basic relativistic effects. We prove the shortening of the major axis of the orbit 

compared with the case where we do not consider relativistic effects. This result can be useful for 

analysing the structure of planet systems around massive stars.  

 

 
Introduction 
 

             The motion of a satellite in a central gravitational field is one of the 

milestone problems, whose solution imposes the use of the general theory of 

relativity. Its solution exactly defines the precession angle of Mercury, a problem, 

which had engaged the theorists for a long time until the arrival of Einstein’s 

theory [1]. After this success, to a great extent the interest for this problem 

decreases as it is assumed that the major goals for investigating this problem have 

already been achieved. The fact that the problem is defined using a nonlinear 

differential equation gives an opportunity for work in this direction. On one hand, 

in the literature the problem is solved using sensible physical assumptions for the 

weak influence of a term in the differential equation on the solution, as the results 

of such an interpretation are being justified [1–2]. In this work we mathematically 

motivate the application of the small parameter method [3]. We use a method in 

which the analytical technique for describing the perturbed behaviour is applied to 

the energy integral. This was we directly define the link between the 

orbital parameters of the motion and we derive a compact formula for the solution. 

A result in such representation is that the major axis of the orbit is 

being shortened in comparison with the case when we do not take into account 
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relativistic effects. In this work, we follow a mathematical framework set in the 

problem of Zelmanov and Agakov [2], but we use a different asymptotic method 

for finding the solution, which aims mathematically rigorous conclusions. 

 
 Mathematical Framework of the Problem 
 

 Consider the motion of a planet T in the radial field of a star S. We assume 

that the central object has a spherical shape and the planet can be approximated as 

a material point. Let note the distance between the two fields with R, and the polar 

angle with : Fig. 1. 

 

 
Fig. 1. The motion of a material point in a radial gravitational field 

 
 Let assume the mass of the material point to be unity, as well as being 

negligible compared to the mass  of the body in whose field it is moving. Then, the 

differential equation of motion of the material point has the following form [2]: 
 

(1) 
𝑑2𝑢

𝑑𝜑2
+ 𝑢 =

𝛾𝜇

ℎ2
+ 3

𝛾𝜇

𝐶2
𝑢2. 

In this formula: ,  is the speed of light in vacuum,  is the universal 

gravitational constant, h is a constant defining the angular momentum, and   is the 

angular parameter. We substitute 

(2)  
1

𝑃
=

𝛾𝜇

ℎ2
. 

Changing the variables: 
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(3)  𝜉 = 𝑢𝑃. 

We finally get  

(4) 
𝑑2𝜉

𝑑𝜑2 + 𝜉 = 1 + 3𝜀𝜉2.. 

The variable  

(5)  𝜀 =
𝛾𝜇

𝑃𝐶2
 

can be interpreted as a small parameter in our further analytical investigations. 

 Integrating Equation (4) we get  

(5) (
𝑑𝜉

𝑑𝜑
)

2

+ 𝜉2 − 2𝜉 − 2𝜀𝜉3 = 2𝜖, 𝜖 =
𝐸𝑃

𝛾𝜇
, 

E is the energy of the system. 

 
Finding and asymptotic solution 
 

We are looking for a solution in a series [4]: 
 

(6) 𝜉 = 𝜉0𝐶0 + 𝜀𝜉1 + 𝜀𝐶1, 

where  and  are functions of ,  and  are constants. We make the guess 

that for the angular variable we have: 

(7) 𝜑 = 𝜑0 + 𝜀𝜑1. 

In further calculations we will use the formula: 

(8) 
𝑑

𝑑𝜑
=

𝑑

𝑑𝜑0
− 𝜀

𝑑𝜑1

𝑑𝜑0

𝑑

𝑑𝜑0
. 

In addition, we write the integral constant as  

(9) 𝜖 = 𝜖0 + 𝜀𝜖1. 

For Equation (5) to zeroth order we get  



28 

 

(10) (
𝑑𝜉0

𝑑𝜑0
)

2

+ 𝜉0
2 + 𝐶0

2 + 2𝜉0𝐶0 − 2𝜉0 − 2𝐶0 = 2𝜖0. 

We are looking for a solution in the form  

(11) 𝜉0 = 𝑒 cos 𝜑0. 

It is easy to see that  Then for the constant e we get  

(12) 𝑒2 = 2𝜖0 + 1. 

The parameter e is the eccentricity of the orbit, and P – the focal parameter. For 

the orbit to be an ellipse, we should have the following condition: −1 < 2𝜖0 < 0. 

 For the first approximation of the equation we get: 

(13)  𝜉1 = 𝑒𝐵 cos 𝜑0. 

We look for  in the form: 

(14) 𝜉1 = 𝑒𝐵 cos 𝜑0. 

After some calculations we equate the sum of all constants to be zero. The same 

procedure is carried out for the sum of the coefficients in front of the periodic 

functions  and . The calculations are carried out with precision up 

to . Then for the parameters we get: 

 𝜖1 = −1, 

 
𝑑𝜑1

𝑑𝜑0
= 3, 

 𝐵 = 3, 

 𝐶1 = 3 (1 +
𝑒

4

2
). 

Then, we substitute: 

(15)  𝑛 = 1 −
3𝛾𝜇

𝐶2𝑃
. 

The final equation for  is: 
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(16) 𝜉 =
1

𝑛
+

𝑒

𝑛
cos 𝑛𝜑 + 𝑂 (

3𝛾𝜇

𝐶2𝑃
𝑒2). 

We can readily write the equation for the trajectory of the satellite: 

(17) 𝑅 =
�̃�

1+𝑒 cos 𝑛𝜑
, �̃� = 𝑃𝑛. 

From this formula it is clear, that the motion on the orbit includes 

precession but we can also note the shortening of the major axes of the orbits of 

space objects, which does not depend on the distance between the planet and the 

central object, but only on the gravity radius of the central object: Table 1. 

             Table 1. Relativistic effects 

Precession:  Shortening of the major axis 

of the elliptical trajectory: 

 

6𝜋𝛾𝜇

𝐶2𝑃
 

3𝛾𝜇

𝐶2  

Shortening of the major 

axes of the orbits for all 

planets in the Solar system 

 4.44  103 m 

 

 

The value we find for the precession coincides with the value derived 

analytically using other methods.  

 We can easily find the equation for energy, including the orbital elements 

[5]: 

(18) 𝐸 = −
𝛾𝜇

2𝑎
−

ℎ2

(1−𝑒2)3𝐶2

𝛾𝜇

𝑎3, 𝑃 = 𝑎(1 − 𝑒2). 

 

 Conclusion 
 

 The nonlinear character of the problem at hand supposes to obtain 

asymptotic solutions which can be mathematically devised differently. Although all 

such solutions describe the motion in the same manner, some conclusions can be 

made to depend on the structures of the equations obtained [6–7]. In this work it is 

shown that adopting the method presented we obtain a formula, which reflects not 
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only the angle of precession but also the shortening of the major axis of the orbit, 

in comparison with calculations based on Newtonian mechanics. For massive stars 

such shortening would be of greater importance for the existence of planet systems. 
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ИЗСЛЕДВАНЕ ДВИЖЕНИЕТО НА СПЪТНИК, СЪГЛАСНО ОБЩАТА 

ТЕОРИЯ НА ОТНОСИТЕЛНОСТТА 

 
Костадин Шейретски 

 
Резюме 

 В статията се изследва интеграла на енергията, който се получава в 

задачата за движение на материална точка в централно поле спрямо Обща 

теория на относителността. Приложени са метод на малкия параметър в 

комбинация с метод на хармоничния баланс. Изведена е компактна формула, 

описваща траекторията на движение. Формулата дава правилно количествено 

описание на основните релативистки ефекти. Доказано е скъсяване на 

главната полуос на отрбитата, в сравнение със случая когато не се отчитат 

релати-вистките ефекти. Този резултат може да бъде полезен при 

анализиране структурата на планетни системи, образувани около масивни 

звезди. 

 


