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Abstract

In this paper, we investigate the energy integral, which is obtained in the problem of the
motion of a material point in a central field within the frame of the general theory of relativity.
Applied is the method of the small parameter in a combination with the balance method. Derived is a
compact formula, describing the trajectory of the motion. This formula gives a correct quantitative
description of the basic relativistic effects. We prove the shortening of the major axis of the orbit
compared with the case where we do not consider relativistic effects. This result can be useful for
analysing the structure of planet systems around massive stars.

Introduction

The motion ofa satellite in a central gravitational field is one of the
milestone problems, whose solution imposes the use of the general theory of
relativity. Its solution exactly defines the precession angle of Mercury, a problem,
which had engaged the theorists for a long time until the arrival of Einstein’s
theory [1]. After this success, to a great extent the interest for this problem
decreases as it is assumed that the major goals for investigating this problem have
already been achieved. The fact that the problem is defined using a nonlinear
differential equation gives an opportunity for work in this direction. On one hand,
in the literature the problem is solved using sensible physical assumptions for the
weak influence of a term in the differential equation on the solution, as the results
of such an interpretation are being justified [1-2]. In this work we mathematically
motivate the application of the small parameter method [3]. We use a method in
which the analytical technique for describing the perturbed behaviour is applied to
the energy integral. This was we directly define the link between the
orbital parameters of the motion and we derive a compact formula for the solution.
A result in such representation is that the major axis of the orbit is
being shortened in comparison with the case when we do not take into account
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relativistic effects. In this work, we follow a mathematical framework set in the
problem of Zelmanov and Agakov [2], but we use a different asymptotic method
for finding the solution, which aims mathematically rigorous conclusions.

Mathematical Framework of the Problem

Consider the motion of a planet 7 in the radial field of a star S. We assume
that the central object has a spherical shape and the planet can be approximated as
a material point. Let note the distance between the two fields with R, and the polar

angle with @: Fig. 1.

Fig. 1. The motion of a material point in a radial gravitational field

Let assume the mass of the material point to be unity, as well as being

negligible compared to the mass K of the body in whose field it is moving. Then, the
differential equation of motion of the material point has the following form [2]:

2
(1) d7”+u=y—”+ 3,2

In this formula: ¥ = R, C is the speed of light in vacuum, ¥ is the universal

gravitational constant, / is a constant defining the angular momentum, and ® is the
angular parameter. We substitute

1 yu
@ PTw
Changing the variables:
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We finally get
L A 2
4 d(p2+f—1+3£§ .

The variable

— Yr
®) €= 12

can be interpreted as a small parameter in our further analytical investigations.
Integrating Equation (4) we get

AN L s2 _or _oog3 _EP
(5) (d(p) +¢ 28 — 2&€ —Ze,e—w,

E is the energy of the system.

Finding and asymptotic solution

We are looking for a solution in a series [4]:

(6) § =¢&0Co + &84 + eCy,

where &0 and &1 are functions of ®, Co and C1 are constants. We make the guess
that for the angular variable we have:

(7 @ =@yt EPq.
In further calculations we will use the formula:

(8) 4 _ 4a 491 d

dp  dog do deo

In addition, we write the integral constant as
9) € = €y t €€4.

For Equation (5) to zeroth order we get
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2
(10) (d_fo) + & + Co” +28,Co — 2§ — 2C, = 2¢,.
dgo

We are looking for a solution in the form

(11) &y = e cos @y.

It is easy to see that €0 = 1. Then for the constant e we get
(12) e?=2¢ + 1.

The parameter e is the eccentricity of the orbit, and P — the focal parameter. For
the orbit to be an ellipse, we should have the following condition: —1 < 2¢€, < 0.

For the first approximation of the equation we get:

(13) & = eB cos ¢@y.

We look for &1 in the form:

(14) & = eBcosy,.

After some calculations we equate the sum of all constants to be zero. The same
procedure is carried out for the sum of the coefficients in front of the periodic

functions €05 P0 and €052 Po_ The calculations are carried out with precision up

to €052 Q0 Then for the parameters we get:

El = _13
aes _ 3,
dgo

B =3,

e2
c,=3(1+%)
Then, we substitute:

(15) nzl—m.

The final equation for £ is:
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(16) & =%+§cosn<p + O(Z’VTﬁez).

We can readily write the equation for the trajectory of the satellite:

p ~
(17 R=———P =Pn.
1+ecosng
From this formula it is clear, that the motion on the orbit includes
precession but we can also note the shortening of the major axes of the orbits of
space objects, which does not depend on the distance between the planet and the

central object, but only on the gravity radius of the central object: Table 1.

Table 1. Relativistic effects

Shortening of the major axis
of the elliptical trajectory:

AP

Precession: £t

G 3w
CZP cz

Shortening of the major | 4.44 103 m
axes of the orbits for all
planets in the Solar system

The value we find for the precession coincides with the value derived
analytically using other methods.

We can easily find the equation for energy, including the orbital elements

Conclusion

The nonlinear character of the problem at hand supposes to obtain
asymptotic solutions which can be mathematically devised differently. Although all
such solutions describe the motion in the same manner, some conclusions can be
made to depend on the structures of the equations obtained [6—7]. In this work it is
shown that adopting the method presented we obtain a formula, which reflects not
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only the angle of precession but also the shortening of the major axis of the orbit,
in comparison with calculations based on Newtonian mechanics. For massive stars
such shortening would be of greater importance for the existence of planet systems.
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HN3CJIEABAHE JIBUKEHHUETO HA CITBbTHUK, CBI'IACHO OBIIIATA
TEOPUSI HA OTHOCUTEJIHOCTTA

Kocmaoun Hleiipemcku

Pe3rome

B crarusara ce uzcnenBa MHTErpaja Ha €HEpruara, KOWTO ce TOIy4aBa B
3a/adata 3a JABKCHHE Ha MaTepHaliHa TOYKAa B IIEHTPAIHO Tojie crpsmo Oobmia
Teopus Ha OTHOCUTETHOCTTa. IlpmiioxkeHuM ca MeTOI Ha MaJIKUS MapameTbp B
KOMOMHAIWS ¢ METO/ Ha XapMOHWYHHA OanaHc. M3BeneHa e KoMIakTHa (hopmyiia,
OTIMICBAIIA TPAEKTOPHATA Ha JABIKeHHE. DopMyraTa 1aBa MPaBIWIIHO KOJIHMIECTBEHO
OTIMICAaHNE Ha OCHOBHHTE pEIIATUBHCTKU e(ekTh. Jloka3aHo € CKbCSABaHE Ha
rJIaBHATA TOJyOC Ha OTpOMTATa, B CPAaBHEHHE ChC CIydas KOrato HE Ce€ OTYUTAT
penatu-puctkutre edextu. To3um pe3ynrar Moxe ga ObAe TOJE3eH IpU
aHaJIM3MpaHe CTPYKTypaTra Ha IUIAHETHH CHUCTEMH, O0pa3yBaHU OKOJIO MAaCHUBHHU
3BE3/M.
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